Wolstenholme and Vandiver primes

Shehzad Hathi UNSW Canberra at ADFA

Joint work with Michael Mossinghoff (CCR Princeton) & Tim Trudgian (UNSW Canberra)

October 8, 2020

Contents

Introduction

Search for new Wolstenholme and Vandiver primes

3 Future work

Irregular primes

A prime p is said to be *irregular* if p divides the class number of the cyclotomic field $\mathbb{Q}(\zeta_p)$, where $\zeta_p = e^{2\pi i/p}$.

Equivalently, p is irregular if p divides the numerator of any of the Bernoulli numbers B_{2k} with $0 < 2k \le p-3$ where B_k is the coefficient in the series expansion

$$\frac{z}{e^z - 1} = \sum_{k > 0} B_k \frac{z^k}{k!}.$$

Wolstenholme prime

We have the following result due to Wolstenholme for every odd prime p

$$\sum_{0 < k < p} \frac{1}{k^2} \equiv 0 \mod p, \ \sum_{0 < k < p} \frac{1}{k} \equiv 0 \mod p^2, \ \binom{2p-1}{p-1} \equiv 1 \mod p^3.$$

A Wolstenholme prime is an odd prime p such that

$$\binom{2p-1}{p-1} \equiv 1 \mod p^4.$$

Glaisher's congruence

Due to Glaisher, we know that

$$\binom{2p-1}{p-1} \equiv 1 - \frac{2}{3}p^3B_{p-3} \mod p^4.$$

Thus, p is a Wolstenholme prime if and only if p divides the numerator of the Bernoulli number B_{p-3} .

Only two Wolstenholme primes (16843 and 2124679) are known.

Vandiver primes

The Euler numbers E_k are coefficients in the series expansion

$$\sec(z) = \sum_{k \ge 0} E_k \frac{z^k}{k!}.$$

A prime p is E-irregular if p divides any of the Euler numbers E_{2k} with $0 < 2k \le p - 3$.

A prime p is called a *Vandiver prime* if it divides the Euler number E_{p-3} .

Stafford and Vandiver congruence

In 1930, Stafford and Vandiver established that

$$\frac{3^{p-2k} + 4^{p-2k} - 6^{p-2k} - 1}{4k} B_{2k} \equiv \sum_{p/6 < s < p/4} s^{2k-1} \mod p$$

For 2k = p - 3, this becomes

$$B_{p-3} \equiv \frac{1}{27} \sum_{p/6 < s < p/4} \frac{1}{s^3} \mod p.$$

Notation for congruences

For real numbers x < y in [0,1], let

$$S_{\ell}(x,y) = \sum_{xp < s < yp} s^{\ell} \mod p,$$

and let

$$C_k(a,b,c) = \frac{a^{p-2k} + b^{p-2k} - c^{p-2k} - 1}{4k}.$$

With the above notation, Stafford and Vandiver's congruence becomes

$$C_k(3,4,6)B_{2k} \equiv S_{2k-1}\left(\frac{1}{6},\frac{1}{4}\right) \mod p.$$

Tanner and Wagstaff congruences

In 1987, Tanner and Wagstaff developed a family of congruences:

$$C_k(2,b,b+1)B_{2k} \equiv \sum_{m=1}^{\lfloor b/2 \rfloor} S_{2k-1}\left(\frac{m}{b+1},\frac{m}{b}\right) \mod p$$

which has cost $\frac{\lfloor b/2 \rfloor (\lfloor b/2 \rfloor + 1)}{2b(b+1)} p$, so asymptotically p/8.

The special case b = 5 was proved by Vandiver in 1937:

$$C_k(2,5,6)B_{2k} \equiv S_{2k-1}\left(\frac{1}{6},\frac{1}{5}\right) + S_{2k-1}\left(\frac{1}{3},\frac{2}{5}\right) \mod p$$

Congruence transformations

③ Separation (σ_f) :

$$S_{\ell}(x,y) = S_{\ell}(x,x+f\cdot(y-x)) + S_{\ell}(x+f\cdot(y-x),y).$$

1 Reflection (ρ) :

$$S_{\ell}(x,y) \equiv (-1)^{\ell} S_{\ell}(1-y,1-x) \mod p.$$

Q Subdivision (τ_d) : If d is a positive integer and $p \nmid d$, then

$$S_{\ell}(x,y) \equiv d^{\ell} \sum_{i=0}^{d-1} S_{\ell}\left(\frac{x+i}{d}, \frac{y+i}{d}\right) \mod p.$$

Derived congruence

Using the transformations, one can convert Vandiver's congruence

$$C_k(2,5,6)B_{2k} \equiv S_{2k-1}\left(\frac{1}{6},\frac{1}{5}\right) + S_{2k-1}\left(\frac{1}{3},\frac{2}{5}\right) \mod p.$$

to this nine-term congruence with cost p/20:

$$C_{k}(2,5,6)B_{2k} \equiv (3^{t}+6^{t})S_{t}(\frac{1}{18},\frac{11}{180}) + (3^{t}+6^{t}-10^{t})S_{t}(\frac{11}{180},\frac{1}{15})$$

$$-(6^{t}-10^{t}+12^{t})S_{t}(\frac{2}{15},\frac{5}{36}) + (6^{t}+12^{t})S_{t}(\frac{7}{36},\frac{1}{5})$$

$$-10^{t}S_{t}(\frac{47}{180},\frac{4}{15}) - (2^{t}+6^{t}+12^{t})S_{t}(\frac{3}{10},\frac{11}{36}) + 10^{t}S_{t}(\frac{1}{3},\frac{61}{180})$$

$$+(6^{t}+12^{t})S_{t}(\frac{13}{36},\frac{11}{30}) - 10^{t}S_{t}(\frac{83}{180},\frac{7}{15}) \mod p,$$

where t = 2k - 1.

Transformation graph

Near misses for Wolstenholme primes

Table: Primes $p \in (10^9, 5 \cdot 10^{10})$ for which $|\langle B_{p-3} \rangle_p| < 50$.

р	$\langle B_{p-3} \rangle_p$
1025793739	-9
1029113299	-7
1939582759	-19
2139716869	2
3803691517	13
8208762073	24
9267199079	-22
13581221947	40
14211360143	-41

р	$\langle B_{p-3} \rangle_p$
15744104053	-2
16425136499	7
21861395221	-11
22855335949	33
23345427659	-27
23543635009	-21
27827984099	34
40306537633	42
44718258259	-6

Histogram for Bernoulli numbers

Figure: Histogram for $\langle B_{p-3} \rangle_p/p$ for $p < 5 \cdot 10^{10}$.

Near misses for Vandiver primes

Table: Primes $p \in (10^9, 2.5 \cdot 10^{10})$ for which $|\langle E_{p-3} \rangle_p| < 50$.

р	$\langle E_{p-3} \rangle_p$
1062232319	0
1348936931	17
1352698411	-17
1836806681	-15
2114780851	2
2161739347	-32
2264214119	38
2978890751	35

	/ F -\
р	$\langle E_{p-3} \rangle_p$
3700821251	23
10158743171	-49
10179358499	-12
14884379297	-40
17380814081	5
18642203467	34
18044797027	-10
23177794127	-48

Histogram for Euler numbers

Figure: Histogram for $\langle E_{p-3} \rangle_p/p$ for $p < 2.5 \cdot 10^{10}$.

Further questions

How small can the cost of a congruence be?

Starting from Vandiver's congruence again, we can find a 546 term congruence with cost p/40.5.

What is the optimal number of terms for a congruence with a certain cost?