Representation of even integers as a sum of squares of primes and powers of two

Shehzad Hathi
UNSW Canberra at ADFA
September 27, 2021

Contents

(1) Introduction
(2) Theoretical framework
(3) Computational work
(4) Applications

Linnik's approximation to Goldbach problem

- Goldbach conjecture:

Every even number ≥ 4 can be written as the sum of two primes.

Linnik's approximation to Goldbach problem

- Goldbach conjecture:

Every even number ≥ 4 can be written as the sum of two primes.

- Linnik's approximation:

Every sufficiently large even integer N can be written as

$$
N=p_{1}+p_{2}+2^{\nu_{1}}+2^{\nu_{2}}+\cdots+2^{\nu_{K}}
$$

where K is an absolute constant.

Linnik's approximation to Goldbach problem

- Goldbach conjecture:

Every even number ≥ 4 can be written as the sum of two primes.

- Linnik's approximation:

Every sufficiently large even integer N can be written as

$$
N=p_{1}+p_{2}+2^{\nu_{1}}+2^{\nu_{2}}+\cdots+2^{\nu_{K}}
$$

where K is an absolute constant.

- Heath-Brown \& Puchta and Pintz \& Ruzsa independently proved $K=7$ under GRH. Recently, Pintz \& Ruzsa proved $K=8$ unconditionally.

Motivation

- Lagrange's four squares theorem:

Every natural number can be written as the sum of four squares (of integers).

Motivation

- Lagrange's four squares theorem:

Every natural number can be written as the sum of four squares (of integers).

- Hua's result:

Every sufficiently large integer $\equiv 5 \bmod 24$ can be expressed as the sum of five squares of primes.

Motivation

- Lagrange's four squares theorem:

Every natural number can be written as the sum of four squares (of integers).

- Hua's result:

Every sufficiently large integer $\equiv 5 \bmod 24$ can be expressed as the sum of five squares of primes.

- Brüdern and Fouvry:

Every sufficiently large integer $N \equiv 4 \bmod 24$ can be represented as the sum of four squares of almost primes.

Representation as sum of four squares of primes

- Can we represent every sufficiently large even integer $\equiv 4 \bmod 24$ as the sum of four squares of primes?

Representation as sum of four squares of primes

- Can we represent every sufficiently large even integer $\equiv 4 \bmod 24$ as the sum of four squares of primes?
- Liu, Liu, and Zhan proved a Linnik-style approximation to this problem in 1999.

Representation as sum of four squares of primes

- Can we represent every sufficiently large even integer $\equiv 4 \bmod 24$ as the sum of four squares of primes?
- Liu, Liu, and Zhan proved a Linnik-style approximation to this problem in 1999.
- Explicit values of k (powers of two):

$$
\begin{aligned}
& k=8330 \\
& k=165 \\
& k=151 \\
& k=46 \\
& k=45 \\
& k=28
\end{aligned}
$$

(Liu \& Liu, 2000)
(Liu \& Lü, 2004)
(Li, 2006)
(Zhao, 2014)
(Platt \& Trudgian, 2015)
(H., 202?)

Circle method set-up

Let $R_{k}(N)$ be the weighted no. of representations of N as four squares of primes and k powers of two:

$$
R_{k}(N)=\sum_{\substack{p_{1}^{2}+p_{2}^{2}+p_{3}{ }^{2}+p_{p^{2}}+2^{\nu_{1}}+\cdots+2^{\nu_{k}}=N \\ 1 \leq \nu_{1}, \ldots, \nu_{k} \leq L}} \prod_{j=1}^{4} \log p_{j} .
$$

Circle method set-up

Let $R_{k}(N)$ be the weighted no. of representations of N as four squares of primes and k powers of two:

$$
R_{k}(N)=\sum_{\substack{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{p^{2}}+2^{\nu_{1}}+\cdots+2^{\nu_{k}}=N \\ 1 \leq \nu_{1}, \ldots, \nu_{k} \leq L}} \prod_{j=1}^{4} \log p_{j} .
$$

As usual, we can express $R_{k}(N)$ as a sum of integrals over the major arcs (\mathfrak{M}) and minor arcs (\mathfrak{m}), respectively.

$$
R_{k}(N)=\int_{\mathfrak{M}} T^{4}(\alpha) G^{k}(\alpha) e(-\alpha N) d \alpha+\int_{\mathfrak{m}} T^{4}(\alpha) G^{k}(\alpha) e(-\alpha N) d \alpha
$$

where

$$
T(\alpha):=\sum_{p}(\log p) e\left(p^{2} \alpha\right) \quad \text { and } \quad G(\alpha):=\sum_{\nu} e\left(2^{\nu} \alpha\right) .
$$

Defining major arcs and minor arcs

Let

$$
L=\frac{\log (N / \log N)}{\log 2} .
$$

Set the parameters,

$$
P=N^{1 / 5-\epsilon} \quad \text { and } \quad Q=\frac{N}{P L^{2 \prime}} .
$$

Defining major arcs and minor arcs

Let

$$
L=\frac{\log (N / \log N)}{\log 2} .
$$

Set the parameters,

$$
P=N^{1 / 5-\epsilon} \quad \text { and } \quad Q=\frac{N}{P L^{21}}
$$

Then:

$$
\mathfrak{M}:=\bigcup_{1 \leq q \leq P} \bigcup_{1 \leq a \leq q} \mathfrak{M}_{a, q} \quad \text { and } \quad \mathfrak{m}:=\left[\frac{1}{Q}, 1+\frac{1}{Q}\right] \backslash \mathfrak{M},
$$

where

$$
\mathfrak{M}_{a, q}:=\left\{\alpha:\left|\alpha-\frac{a}{q}\right| \leq \frac{1}{q Q}\right\} .
$$

Estimate over major arcs

Lemma (Zhao)

Let

$$
\mathfrak{J}(h)=\int_{-\infty}^{\infty}\left(\int_{\sqrt{1 / 4-\eta}}^{\sqrt{1 / 4+\eta}} e\left(x^{2} \beta\right) d x\right)^{4} e(-h \beta) d \beta
$$

Then

$$
\int_{\mathfrak{M}} T^{4}(\alpha) G^{k}(\alpha) e(-\alpha N) d \alpha \geq 0.9 \times 8 \mathfrak{J}(1) N L^{k}+O\left(N L^{k-1}\right)
$$

Estimate over minor arcs

Lemma (Zhao)

We have

$$
\begin{aligned}
\int_{\mathfrak{m}}\left|T(\alpha)^{4} G(\alpha)^{2 \prime}\right| d \alpha \leq & 8(15+\epsilon) c_{0, l}(1+O(\eta)) \mathfrak{J}(0) N L^{2 \prime} \\
& +O\left(N L^{2 l-1}\right) .
\end{aligned}
$$

Why do we want to estimate $c_{0, l}$?

For $N \equiv 4 \bmod 8$, we have

$$
R_{k^{\prime}}(N) \geq 8 N L^{k^{\prime}}\left(0.9 \mathfrak{J}(1)-\lambda_{0}{ }^{k^{\prime}-2 I}(15+\epsilon) c_{0, /}(1+O(\eta)) \mathfrak{J}(0)\right)
$$

Why do we want to estimate $c_{0,1}$?

For $N \equiv 4 \bmod 8$, we have

$$
R_{k^{\prime}}(N) \geq 8 N L^{k^{\prime}}\left(0.9 \mathfrak{J}(1)-\lambda_{0}{ }^{k^{\prime}-2 I}(15+\epsilon) c_{0, /}(1+O(\eta)) \mathfrak{J}(0)\right)
$$

We would like to prove $R_{k^{\prime}}(N)>0$ for sufficiently large $N \equiv 4 \bmod 8$. Then $R_{k}(N)>0$ for $k=k^{\prime}+2$ and sufficiently large even N.

Computation of $c_{0, l}$

$$
c_{0, l}:=\frac{75}{32} c_{1, l}+\frac{105}{32} c_{2, l} .
$$

Computation of $c_{0, l}$

$$
c_{0, l}:=\frac{75}{32} c_{1, l}+\frac{105}{32} c_{2, l} .
$$

We can split $c_{1, l}$ into exact and inexact parts:

$$
c_{1, I} \leq \sum_{\substack{p \mid d \Rightarrow p>5 \\ d<\left(2^{M}-1\right) / 3 \\ \beta_{l}(3 d)<M}} \frac{\mu^{2}(d)}{c(d)}\left(\frac{1}{\beta_{l}(3 d)}-\frac{1}{M}\right)+\text { inexact part }
$$

Computation of $c_{0, l}$

$$
c_{0, l}:=\frac{75}{32} c_{1, l}+\frac{105}{32} c_{2, l} .
$$

We can split $c_{1, l}$ into exact and inexact parts:

$$
c_{1, l} \leq \sum_{\substack{p \mid d \Rightarrow p>5 \\ d<\left(2^{M}-1\right) / 3 \\ \beta_{l}(3 d)<M}} \frac{\mu^{2}(d)}{c(d)}\left(\frac{1}{\beta_{l}(3 d)}-\frac{1}{M}\right)+\text { inexact part }
$$

Here,

$$
\beta_{l}(3 d):=\frac{\rho^{2 \prime}(3 d)}{N_{l}(3 d)}
$$

where

$$
N_{l}(3 d):=\sum_{\substack{3 d \mid \sum_{1 \leq j \leq 1}\left(2^{u_{j}}-2^{v_{j}}\right) \\ 1 \leq u_{j}, v_{j} \leq \rho(3 d)}} 1 .
$$

Relevant inequalities

We can significantly cut down on computations due to these inequalities:

$$
\beta_{l}(d) \geq \rho(d) \geq \log (d+1) / \log 2
$$

Relevant inequalities

We can significantly cut down on computations due to these inequalities:

$$
\beta_{l}(d) \geq \rho(d) \geq \log (d+1) / \log 2
$$

If $d^{\prime} \mid d$,

$$
\rho\left(d^{\prime}\right) \leq \rho(d) \quad \text { and } \quad \beta_{l}\left(d^{\prime}\right) \leq \beta_{l}(d)
$$

Relevant inequalities

We can significantly cut down on computations due to these inequalities:

$$
\beta_{l}(d) \geq \rho(d) \geq \log (d+1) / \log 2
$$

If $d^{\prime} \mid d$,

$$
\rho\left(d^{\prime}\right) \leq \rho(d) \quad \text { and } \quad \beta_{l}\left(d^{\prime}\right) \leq \beta_{l}(d)
$$

Also,

$$
\beta_{l}(d) \geq \beta_{l-1}(d)
$$

Table: $\beta_{7}(3 d)$ for large primes

p	$\beta_{7}(3 p)$	Time (in s)
22366891	3089168.27	15238
25781083	15652237.24	19914
164511353	56626483.49	13332
616318177	28269951.69	6728

Choice of /

In Zhao's work, I is chosen to be 7 . Zhao's estimate is $c_{0,7}<2.07^{*}$. Using our computations, we obtain $c_{0,7}<0.78$. But here, we choose $I=2$ ($c_{0,2}<0.803$) due to the following table.

Table: Powers of two for different values of I

l	k
2	28
3	29
4	31
5	33
6	35
7	37
8	39

Applications

Zhao's linear sieve method has been utilised for many other Linnik-Goldbach problems and in all of these works, they use Zhao's original estimate for c_{0}.

Applications

Zhao's linear sieve method has been utilised for many other Linnik-Goldbach problems and in all of these works, they use Zhao's original estimate for c_{0}.

- Liu (2014) obtained a refinement in the problem of representing N as

$$
N=p_{1}+p_{2}^{2}+p_{3}^{2}+2^{\nu_{1}}+\cdots+2^{\nu_{k}}
$$

and proved that $k=35$ is acceptable.

Applications

Zhao's linear sieve method has been utilised for many other Linnik-Goldbach problems and in all of these works, they use Zhao's original estimate for c_{0}.

- Liu (2014) obtained a refinement in the problem of representing N as

$$
N=p_{1}+p_{2}^{2}+p_{3}^{2}+2^{\nu_{1}}+\cdots+2^{\nu_{k}}
$$

and proved that $k=35$ is acceptable.

- Hu and Liu (2015) have considered the problem of simultaneous representations:

$$
\begin{aligned}
& N_{1}=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}+2^{\nu_{1}}+\cdots+2^{\nu_{k}} \\
& N_{2}=q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}+2^{\nu_{1}}+\cdots+2^{\nu_{k}}
\end{aligned}
$$

They showed that $k=142$ is acceptable.

