The Galaxy School IMPLEMENTING TFU

Lecture 1 - Euler Characteristic

Shehzad Hathi

July 16, 2016

A polyhedron is a 3D solid with straight edges and faces. (Is a sphere a polyhedron?) In a polyhedron, if two faces meet, they have a common edge between them and if two edges meet, they share a vertex. Euler characteristic or Euler number is a specific relation between the number of vertices (V), number of edges (E) and number of faces (F) for a polyhedron. (What are the dimensions of a vertex, an edge and a face? Is there any connection between 2D polygons and 3D polyhedrons?)

Count V, E, F for regular convex polyhedra, also called platonic solids (see Figure 1). (What are regular convex polyhedra?) If I tell you that there is a specific linear relation between V, E, and F that all of these platonic solids satisfy, can you solve three simultaneous equations and find out the relation? Assume the identity to be

$$
x V+y E+z F=k,
$$

where x, y, z, and k are real numbers. Dividing the equation by x, we can rewrite it as

$$
V+a E+b F=c .
$$

Find the values of a, b, and c and check whether all platonic solids satisfy this identity. In fact, all convex polyhedra should satisfy this identity (Why?), called Euler's polyhedron formula. In general, Euler characteristic,

$$
\chi=V-E+F,
$$

is an important quantity that describes the shape of a 3D object regardless of the way it is bent. For instance, we can prove that there are only five platonic solids using the value of χ.

Figure 1: Platonic Solids (Source: Wikipedia)

