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Arithmetic functions

Arithmetic functions are complex-valued functions defined on positive
integers. For instance, we have the characteristic function of primes:

() = 1 if nis prime
Xprime\)' =10 otherwise

Its summatory function is the prime counting function that is defined for
all positive reals:

X) = ZXprlme(n Z 1.

n<x p<x
p prime
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Prime number theorem

The asymptotic behaviour of 7(x) is given by

7(x) ~ Li(x) = /2 ) l“’gtt

which is referred to as the prime number theorem (PNT). It was first
proven by Hadamard and de la Vallée Poussin independently in 1896.
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Error term in PNT

In fact, de la Vallée Poussin also proved the relative error in this

estimation, that is,

m(x) — Li(x)
Li(x)

for some positive constant ¢ and for all sufficiently large x.

< efc\/logx

Under the Riemann Hypothesis (RH), it can be shown that

m(x) — Li(x)

—(1/2)+€
L) | =~

as x — oo and for all € > 0.
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Sign of m(x) — Li(

Possibilities:
o It maintains the same sign for all x. As an example, one could look
at the other formulation of PNT

m(x) ~

X

log x

In this case, we know that 7(x) — (x/ log x) is always positive for

x> 2.

e 7(x) oscillates about Li(x) with both signs featuring “approximately
equally”, or

@ It changes sign “quite often” but exhibits a bias towards a certain
sign.
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Skewes' number

In this particular case, w(x) — Li(x) changes sign infinitely often [Lit14]
but exhibits a very strong bias towards the negative sign.

The density of numbers where 7(x) — Li(x) < 0 is very close to 1 but not
exactly 1 ([Win41] and [RS94]). If the bias towards a certain sign is quite
strong initially, then it also becomes interesting to ask the question about
the first sign change. The value of x where a sign change occurs (or the
smallest such number) from negative to positive is called Skewes’ number.

While we do not have an explicit value for a Skewes' number, there are
upper bounds for the first Skewes’ number [STD15]. It is also known that
7(x) < Li(x) upto 109 [Biit18].
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Mobius function

The Mdbius function, p(-), is a standard arithmetic function defined in the
following manner:

1 ifn=1
p(n) =9 (1) ifn=pi-pr---px
0 otherwise
where n is a positive integer and py1, po, ..., px are distinct primes.

The Mobius function is related to the zeta-function by the following

property: -
1 w(n
RS

n>1

for R(s) > 1.
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Mertens' conjecture

As before, we consider the summatory function

M(x) = Z w(n).

n<x

The Mertens' conjecture is the claim that

M(x)| < CVx

for x > 1 and some C > 1. In fact, M(x) = O(x?) implies that the
Riemann zeta function, ((s), has no zeros in the half-plane R(s) > 0.
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Implications

Let a zero on the critical line be p, := 5, + i,.

Apart from the truth of RH, the Mertens’ conjecture also implies

@ simplicity of the zeros, and

@ ~,'s linearly dependent [Ing42].
Although the numerical evidence supporting the Mertens' conjecture is
substantial (there are no counter-examples until 10*® [Hur18]), the last

implication suggests that the conjecture is too good to be true since there
is no reason why such a linear dependence should exist.
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N-independence

Ingham’s method, in general, gives us arbitrarily large oscillations in the
value of M(x)/+/x if we assume linear independence of v,'s, i.e.

chyzo, & EL
v

does not have any non-trivial solution. Since establishing true linear
independence of 7,'s is not feasible, one could ask if a weaker form of
linear independence gives us large but finite oscillations.

We say that the first m zeros (on the critical line) are N-independent if

m
> ri=0, cez,
i=1

with |¢;| < N, does not have any non-trivial solution.
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Disproof and counterexamples

Odlyzko and te Riele [OR85] succeeded in proving that
lim sup,_,oo M(x)/+/x > 1.06 and liminfy_o M(x)//x < —1.009,
thereby disproving the conjecture (for C = 1).

However, the method of the disproof was ineffective as it did not yield a
counterexample or even an X such that

max ‘M(X)| >

1<x<X  4/x

Subsequently, Pintz [Pin87] gave an effective disproof with X = e
Since then, the upper bound has been improved, more recently, by Saouter
and te Riele [SR14] to e!:00410%

3.21.1064

Shehzad Hathi (UNSW Canberra) Biases, oscillations & first sign changes December 4, 2019 12/17



Growth of the Mertens’ function

While the exact growth of M(x) is not known, all the conjectures point to
a smaller counterexample than the one proved in [SR14]. For instance,
Kotnik and te Riele [KR06] conjectured that

M(x)

x = Q4 (+/logloglog x),

which suggests that the first counterexample might be at ~ ¢510%.
Kaczorowski's work [Kac07] suggests that the first counterexample could
be at ~ 10793, as noted in [SR14]. Both of these values for X are well
below what has been proven so far (e1:00410%)
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@ Improve upon Saouter and te Riele's bound using more recent results
about the modulus and the zeros of the zeta-function.

@ Refine aspects of Ingham’s method with respect to N-independence.

@ Analyse biases, oscillations and sign changes in other settings, for
instance, prime number races. Consider arithmetic functions f,(-) and

fo(-) that take non-zero values when p = a mod g and p = b mod q
respectively, where p is a prime. We can ask similar questions (as in

the case of 7(x) — Li(x)) about _ _ (fa(x) — fp(x)).
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